

CENTRE DE BIOMÉTHANISATION DE L'AGGLOMÉRATION DE QUÉBEC

Présenté par Carl Desharnais

Le 2 mai 2019 Service des projets industriels et de la valorisation

PLAN DE PRÉSENTATION

- Introduction
- Mise à jour des coûts d'investissement et des revenus
- Biométhanisation vs compostage
- Les avantages du projet de Québec
- Les prochaines étapes du projet 2019-2022
- Le fonctionnement de la biométhanisation
- Conclusion

MISE À JOUR DES COÛTS D'INVESTISSEMENT

MISE À JOUR DES COÛTS D'INVESTISSEMENT

En raison de la hausse des revenus liée au projet, la Ville choisit d'investir d'avantage pour le bonifier :

190 M\$ investis plutôt que 124,5 M\$: ajout de 65,5 M\$

	CBMO Biométhanisation	CRMO Collecte/Récupération	Total
Estimation 2014	98,5 M\$	26 M\$	124,5 M\$
Estimation 2019	135 M\$	55 M\$	190 M\$

MISE À JOUR DES COÛTS D'INVESTISSEMENT

Les objectifs poursuivis :

- Contribuer au développement durable
 - En appliquant le principe d'économie circulaire
- Avantages du projet :
 - Réduction des GES
 - Évite une 3^e voie de collecte
 - Moins de camionnage
 - Circulation détournée pour le digestat
 - Réduction du volume d'incinération

INVESTISSEMENTS DANS LE CBMO

Description des principaux éléments de modification (voir les prochaines diapositives)	%	M\$
Amélioration du projet	38	14,0
Sols	21	7,7
Inflation, taux de change et matières premières	41	14,8
Total	100	36,5

REPORT DU PROJET POUR 2022 : COÛT 14,8 M\$

Désavantages

- Inflation
- Taux de change défavorable (US)
 - Estimation 2014 : 1,10
 - Estimation 2019 : *1,33*
- Hausse du coût des matières premières (acier en particulier)

Avantages

- A permis de bonifier le projet et de maximiser les possibilités de revenus (+80 M\$) en raison d'une entente avec Énergir
- Ajout d'un volet de sensibilisation et information pour le grand public

MISE À JOUR DES REVENUS

MEILLEURE PERFORMANCE ÉNERGÉTIQUE ENTENTE DE PRINCIPE AVEC ÉNERGIR

- Contrat avec Énergir pour une durée de 20 ans
- Tarif bonifié en raison de la contribution à la réduction des GES
- Prix à terme à pleine capacité : 12,82 \$/GJ
- Quantité augmentée de 50 % en raison de l'amélioration du projet
- Revenus améliorés à 5 M\$/an
- Bonifie le cadre financier du projet de 80 M\$ sur 20 ans

MEILLEURE PERFORMANCE ÉNERGÉTIQUE ENTENTE DE PRINCIPE AVEC ÉNERGIR

• Contrat de vente à long terme de 20 ans, indexé annuellement

	2014	2019	
Tarif (\$/GJ)	3,66	12,82	
Quantité (GJ)	253 042	389 753	
Revenus (\$)	926 133	4 996 633	

Sur 20 ans, 100 M\$ au lieu de 20 M\$

RÉDUCTION DES COÛTS D'EXPLOITATION NETS

Les coûts d'exploitation nets seront diminués de 4,2 M\$ par année

Réduction de 84 M\$ sur 20 ans (11,4 M\$ réduit à 7,2 M\$)

	2014 *	2019	Écart	
Revenus	(1,3) M\$	(5,3) M\$	(4,0) M\$	Augmentation qté et tarif GNR
Exploitation	7,2 M\$	8,2 M\$	1,0 M\$	Consommation électrique
Valorisation digestat	5,5 M\$	4,3 M\$	(1,2) M\$	Diminution des quantités
Total	11,4 M\$	7,2 M\$	(4,2) M\$	

^{*} Les données de projet 2014 ont été indexées en \$ 2019 pour fin de comparaison

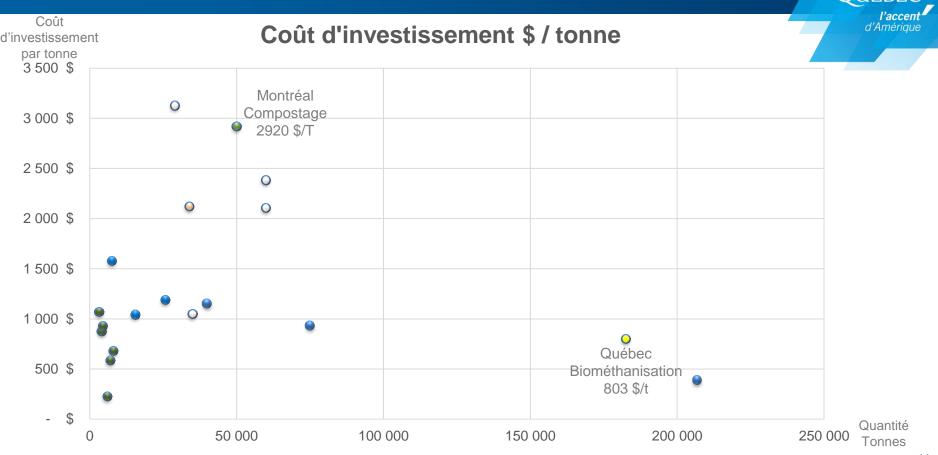
OBLIGATION GOUVERNEMENTALE

Détourner de l'élimination les matières organiques putrescibles

Plan d'action 2013-2020 sur les changements climatiques :

- Détourner de l'élimination (enfouissement et/ou incinération) les matières organiques putrescibles <u>d'ici 2022</u>
- 2. Réduire les émissions de gaz à effet de serre (GES)
- Recycler la matière organique issue de la digestion anaérobie ou du compostage
- Programme gouvernemental de traitement des matières organiques par biométhanisation ou compostage (ouvert ou fermé) (PTMOBC)

UN INVESTISSEMENT ADDITIONNEL À COÛT NUL


Révision du projet :

- Hausse des investissements : 65,5 M\$*
- Réduction des coûts d'exploitation nets sur 20 ans : 84 M\$

^{*} Inclus réserve de 15 M\$

UN PROJET DES PLUS COMPÉTITIFS À 803 \$/T

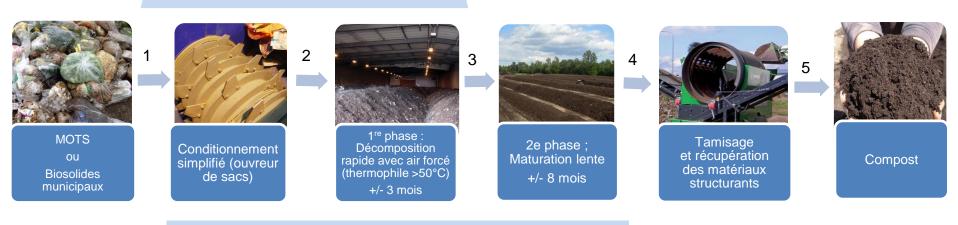
BIOMÉTHANISATION VERSUS COMPOSTAGE

PROJET DE BIOMÉTHANISATION

Schéma simplifié

Digestion anaérobie

Centre de biométhanisation 182 600 T/an



Gaz naturel renouvelable
Réseau Énergir

COMPOSTAGE RÉSIDUS ALIMENTAIRES EN SACS

Bâtiment fermé avec traitement de l'air vicié

Plateforme étanche

2/3 de l'intrant

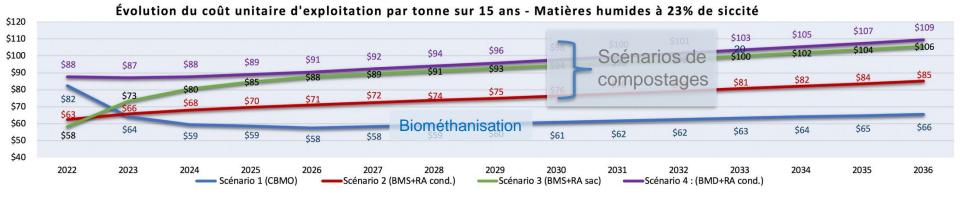
Ajout de matériaux structurants

Recyclage des structurants

DÉSAVANTAGES D'UN PROJET DE COMPOSTAGE POUR LA VILLE DE QUÉBEC

- Importante surface au sol requise (temps de traitement plus long)
- Faible réduction de GES (réf. Recyc-Québec)
- Pas de production d'énergie verte
- Ajout d'agents structurants (\$)
- Nécessite plus de transport
- Pas de synergie avec les infrastructures Ville
- Pas d'économies d'échelle si les intrants sont séparés

AIDE FINANCIÈRE


Programme de traitement des matières organiques par biométhanisation et compostage

	Dépenses admissibles	Taux de subvention	
	maximales	Municipal	Privé
Biométhanisation	Boues: 125 \$/t Résidus alimentaires : 800 \$/t	66 %	25 %
Compostage fermé	600 \$/t	50 %	20 %
Compostage ouvert	300 \$/t	50 %	20 %

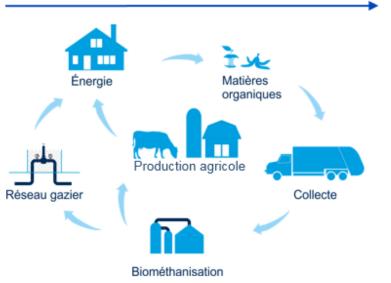
ANALYSE FINANCIÈRE COÛT D'OPÉRATION

- Coût d'exploitation annuel par tonne selon scénarios 2025 :
 - Biométhanisation environ 60 \$/t
 - Compostage 70 \$/t et plus

LES AVANTAGES DU PROJET DE QUÉBEC

LES AVANTAGES DU PROJET DE QUÉBEC

- Beaucoup moins de camionnage
- Meilleur bilan GES, réduit l'importation de gaz naturel fossile
- Pas d'ajout d'une troisième collecte pour les matières organiques (bacs brun)
- Réduction du volume d'incinération
- Rejoint le principe d'économie circulaire


BIOMÉTHANISATION UN PROCÉDÉ DURABLE PAR LA PRODUCTION DE GAZ NATUREL RENOUVELABLE (GNR)

Le GNR contribue à la transition énergétique en fournissant une énergie propre, souple et produite localement

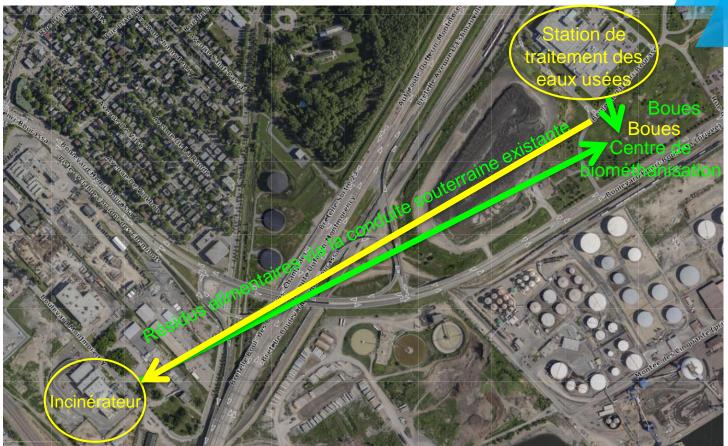
Chaîne de valeur simplifiée du GNR

Avantages pour les communautés productrices

- ✓ Production d'énergie 100% renouvelable
- ✓ Production d'une énergie locale favorisant :
 - L'économie circulaire
 - La création d'emplois en région
 - La réduction de la dépendance aux importations internationales
- ✓ Production locale de matière fertilisante pouvant être utilisée comme engrais par les producteurs agricoles
- √ Réduction des émissions de GES de trois façons :
 - La réduction de l'enfouissement
 - Le remplacement d'un combustible fossile
 - La réduction de l'utilisation d'engrais chimiques

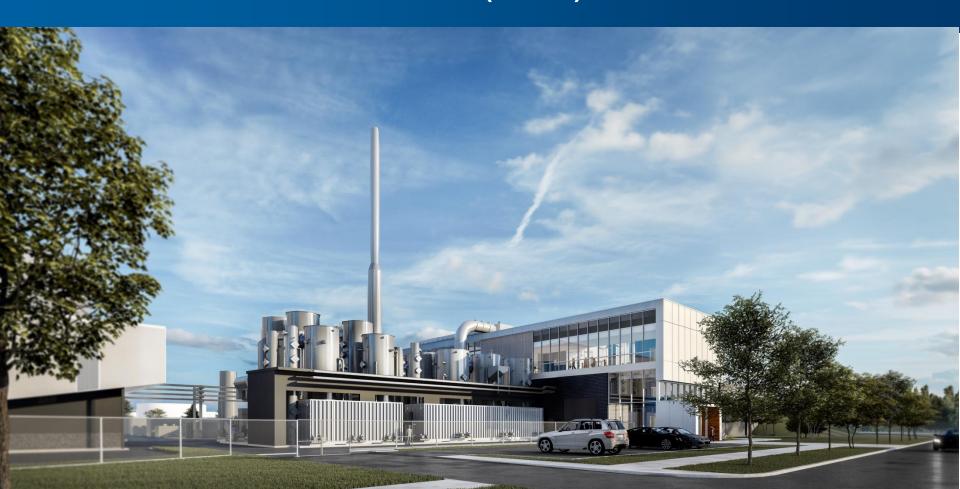
PROJET DU CENTRE DE BIOMÉTHANISATION DES MATIÈRES ORGANIQUES CBMO

SYNERGIE ENTRE LES ÉQUIPEMENTS EXISTANTS



Juxtaposé à la Station de traitement des eaux usées Est

SYNERGIE ENTRE LES ÉQUIPEMENTS EXISTANTS



LE FONCTIONNEMENT DE LA BIOMÉTHANISATION

LA BIOMÉTHANISATION – UNE TECHNOLOGIE ÉPROUVÉE

- 17 000 installations en Europe (en 2017)
- 2000 installations aux États-Unis
- Province de Québec :
 - Gatineau
 - Repentigny
 - La Vallée-du-Richelieu
 - La Prairie (RAEBL)
 - Saint-Hyacinthe
 - Rivière-du-Loup
 - Varennes (SEMECS)

EXPÉRIENCES EXAMINÉES PAR LA VILLE (EXTÉRIEUR DU CANADA)

Norvège : Oslo, Taranrodveien

 Angleterre : Birmingham, Banlieue de Londres, Bridgewater

- Ecosse : Glenfarg, Région Edimbourgh
- Suisse : Région Zurich
- Allemagne : Région Stuttgart & Karlsruhe
- Pays-Bas
- France : Douai , Forbach, Montpellier, Nantes
- Italie: Milan
- Autriche : Zell am See
- États-Unis : Washington

SURVOL DES PROCÉDÉS

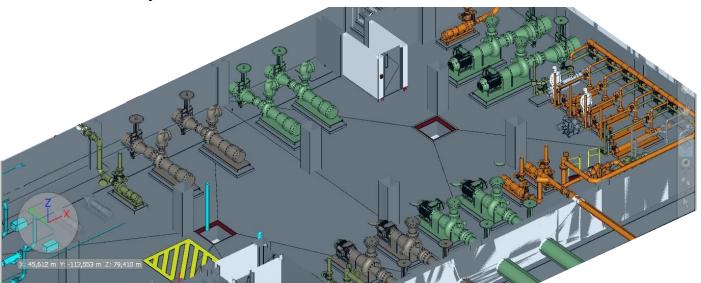


- Réception des matières
- Digestion
- Chauffage et mélange
- Production du GNR
- Séparation solide (digestat) des liquides
- Production engrais liquide
- Traitement des odeurs du bâtiment

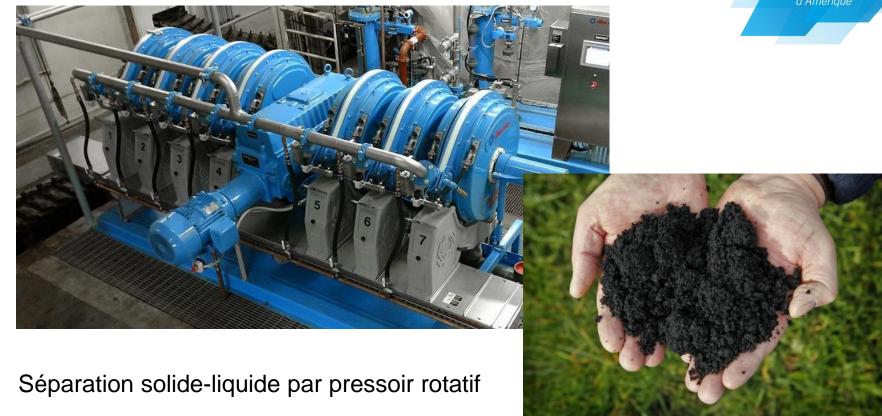
SURVOL DES PROCÉDÉS – LES DIGESTEURS

- Réservoir isolé, agité et maintenu à 58° C
- Développement d'un consortium de bactéries adaptées
- 90 % d'eau avec une phase gazeuse à basse pression
- Réservoirs d'hydrolyse 2000 m³
- Réservoirs de digestion 6000 m³
- Lignes indépendantes pour les résidus alimentaires et les biosolides

SURVOL DES PROCÉDÉS – LE CHAUFFAGE


- Biosolides entre 5° C et 20° C résidus alimentaires préchauffés à l'incinérateur
- Chauffage avec des chaudières électriques
- Échangeurs de chaleur de type tubetube
- Récupération de chaleur à la sortie des digesteurs

SURVOL DES PROCÉDÉS – SYSTÈME HYDRAULIQUE



- Agitation du contenu des digesteurs par système hydraulique de recirculation
- Pompage des fluides à travers les échangeurs de chaleur
- Transfert des fluides vers la déshydratation

SURVOL DES PROCÉDÉS – DÉSHYDRATATION

SURVOL DES PROCÉDÉS – DÉSHYDRATATION

LA BIOMÉTHANISATION – ÉPURATION DU BIOGAZ

- Biogaz = mélange de méthane (gaz naturel) et de dioxyde de carbone (CO₂)
- Technologie de type lavage à l'eau
- Le procédé d'épuration enlève le CO₂
- Station d'injection d'Énergir
- Qualité de gaz

SURVOL DES PROCÉDÉS-TRAITEMENT D'EAU

- L'ammoniac est généré dans les digesteurs et se retrouve en partie dans le rejet d'eau
- Normes de rejet
- Occasion de valoriser l'ammoniac
- Engrais déjà commercialisé
- Discussions prévues avec des distributeurs

LA BIOMÉTHANISATION – TRAITEMENT DES ODEURS EN SITE FERMÉ

VILLE DE QUÉBEC

l'accent
d'Amérique

- Bâtiment en pression négative : zéro odeur
- Nombre de changements d'air à l'heure
- Normes à respecter aux limites de la propriété
- Étude de dispersion incluant toutes les sources
- Procédé par réactifs chimiques
- Colonne de garnissage



ÉCHÉANCIER ET PROCHAINES ÉTAPES

ÉCHÉANCIER CBMO (BIOMÉTHANISATION DES BOUES)

Projet complété pour décembre 2021

Prochaines étapes

- Début de la construction en mai 2019
- Finaliser le dernier appel d'offres de procédés
- Poursuivre les appels d'offres de construction: Travaux civils phase 2, Béton, ...
- Négociation avec des distributeurs du produit du digestat

CONCLUSION

CONCLUSION

- Coûts vs revenus : la Ville est gagnante sur les plans financiers et environnementaux
- Opportunité de valorisation d'une matière résiduelle par la production du digestat
- Production d'une énergie renouvelable, réduction des GES et diminution d'énergie fossile
- Réduction du volume d'incinération
- Réduction du transport local :
 - par la fermeture de la station de traitement des boues
 - détournement du transport du digestat vers les grands axes routiers

La solution qui s'impose au profit des citoyens de l'agglomération de Québec est une approche globale qui repose sur des valeurs à la fois écologique, sociale et économique.

VILLE DE QUÉBEC l'accent d'Amérique Notre ville, nos matières résiduelles, notre responsabilité Agissons pour aujourd'hui et pour demain

Questions